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soot0  Introduction

poo10  Forensic anthropology as forensic medicine deals with questions that are likely to end
up in court and need to be answered with accuracy. In the United States the implemen-
tation of the Daubert standards (Daubert v. Merrell Dow Pharmaceuticals, Inc, 1993)
has produced a change in scientific testimony by integrating specific queries such as
the method testability; the method scrutiny through peer review and publication,
known as potential error rates; and method acceptance by the scientific community.
Although the previously accepted Frye Standards (Frye v. Unites States, 1923) for
scientific evidence established the necessity of the “general acceptance” of a method,
Daubert placed more weight onto the scientific method employed by the experts rather
than their qualifications and reputation (Ousley and Hollinger, 2012). According to
Daubert, the potential error rates of a method need to be known to evaluate its validity
and reliability. Thus forensic anthropologists are encouraged by this legal framework
to choose a method appropriate for the specific case.

p0015 “Error” from the mathematical or statistical point of view refers to the difference
between a computed or measured value to the true value with the deviation from the
calculated and correct value being stated by the standard error or prediction intervals
(Christensen et al., 2014). For instance, the recommended error for a sex estimation
method is less than 5%, that is, the accuracy of the method needs to be over 95% for
the classification of a given individual. Nevertheless, the expert must acknowledge,
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104 CHAPTER 3.1 Frequentist approach to data analysis

when providing expert witness testimony, that the statistical error is a reflection of
the data represented by the sample understudy with its specific variability (Christensen
etal., 2014). In practice the selection of a method is subject to other factors such as the
preservation of the remains, time, or availability of equipment. For example, if the only
method available has a low accuracy, the forensic expert is expected to acknowledge,
report, and clearly present the limitations (Christensen and Crowder, 2009).

p0020 The Scientific Working Group for Forensic Anthropology underlines that statis-
tics are intended to “inform scientific inferences via the collection, organization,
analysis, and interpretation of data” (SWGATH, 2012). The main questions relate
to the estimation of the biological characteristics (age, sex, stature, and ancestry)
and to personal identification, but other queries may also emerge, such as the differ-
entiation of peri- and postmortem trauma. The answers are typically provided using
inferential statistics, which amounts to any attempt to use properties of a sample to
fit an approximate data model and to apply this model to support statements about
the general population from which the sample derives. Inferential statistics is divided
into two branches: frequentist statistics (which is the subject of this chapter)
and Bayesian statistics. Both approaches are based on the study of the properties
of past observations to extract information, inferring or predicting characteristics
of new data. Yet the mathematical theory, the definition, and general concept of
probability differ between frequentist and Bayesian statistics. In the frequentist
approach the unknown properties are assumed to be perfectly knowledgeable
but unknown to us. If one had access to an infinite number of observations, they
could be established without doubt. In the Bayesian approach, the randomness is part
of the data-generating process, which is inherently random, and hence, no matter
how large the sample, only probabilistic statements can be made about it.

p0025 This paper will showcase the frequentist approach by analyzing an example dataset
of morphological features of the tibia in seven Mediterranean populations regarding
sex and ancestry estimation. This sample was collected for a previous study
(Kranioti et al., 2019), and for the purpose of this example, 100 individuals of Southern
European (SE) ancestry and 100 individuals of Turkish (TU) ancestry were randomly
selected from the original dataset. Three measurements from the tibia were included in
the analysis: maximum length (ML), upper breadth (UB), and lower breadth (LB).
The SE group consisted of Greeks, Greek-Cypriots, Italians, Spanish, and Portuguese
individuals. Both SE and the TU samples were equally represented by males and
females. All calculations were undertaken using the statistic language R and its open
source libraries and extensions. Examples of code, written in the R programming
language, is available at http://dev.med.uoc.gr/forensic/tbcl/chapter.jsp.

sooz0  Exploratory data analysis (EDA)

poo30  The first step in any statistical analysis is to gain basic insight into the data by cal-
culating summary statistics such as minimum, maximum, median, mean values, and
quantiles. Summary statistics provide useful information regarding several proper-
ties of the data such as the range of each variable, the balance or imbalance of
categorical variables, and the symmetry of their distributions. Table 1 presents the
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tooro Table 1 Summary statistics of the example dataset (measurements in mm).

ML UB LB
Minimum 277.0 49.00 33.51
First quartile 330.0 68.45 44.00
Median 349.5 72.05 47.85
Mean 348.0 72.45 47.56
Third quartile 366.0 76.62 51.00
Maximum 411.0 86.60 59.90

ML, maximum length; UB, upper breadth; LB, lower breadth.

t0015 Table 2 Correlation matrix of the example dataset.

Ancestry Sex ML uB LB
Ancestry 1.000 0.000 0.03 0.129 0.533
Sex 0.000 1.000 —0.511 —0.670 —0.505
ML 0.031 —0.511 1.000 0.575 0.480
UB 0.129 —-0.970 0.575 1.000 0.668
LB 0.533 —0.505 0.480 0.668 1.000

ML, maximum length; UB, upper breadth; LB, lower breadth.

summary statistics for the example dataset. Table 2 shows the correlation among the
variables by using the correlation coefficient as a measure of the degree of linear
association (collinearity) between a pair of variables.

p0035 The next step in data exploration usually involves the visualization of the dataset,
such as using histograms or boxplots that reveal the distribution of individual vari-
ables and identify potential outliers. Paired scatterplots may be used to identify
potential relationships between variables. For the example dataset the research
question concerns the estimation of sex and ancestry from the measurements of
the tibia; hence, two sets of graphs, for sex and ancestry, respectively, were produced
(Fig. 1).

p0040 Fig. 1A reveals sizable differences in the distribution for all variables with respect
to sex, and therefore the hypothesis that sex can be inferred from these tibial
measurements seems plausible. Fig. 1B presents a less clear-cut situation, where
LB measurements seem to differ between groups of different ancestry but UB and
ML do not.

p0045 The summary statistics in Table 1 indicate a symmetric distribution of the data;
the mean is symmetrically located between 25% and 75% quartile. Some of the histo-
grams in Fig. 1 seem to be slightly skewed, such as in the case of ML measurements
for males, although this could be the result of the random sampling process (given the
sample size). Most histograms appear to be compatible with the normal distribution
assumption. The histograms in Fig. 1 support the hypothesis of equal variance
between groups—in less clear-cut cases, this assumption could be verified using
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Introduction 107

the F-test. The boxplots for UB in Fig. 1 indicate that there are two isolated measure-
ments at the extreme of the distribution that could be considered as possible outliers
or measurement errors. Inspection of the two data points did not reveal any apparent
abnormalities, and hence, they were retained, identified as possible high leverage
points. The calculated correlation coefficients of all pairs of independent variables
were high (Table 2).

p0050 The original dataset, the one from which the example dataset was sampled, was
randomly collected from various sites in the Mediterranean Basin and is believed to
be a representative, nonbiased sample from the populations involved (Kranioti et al.,
2019). Individual specimens were collected from areas and periods with no indica-
tions of abnormal population effects, such as epidemics, or natural catastrophes. It is
therefore reasonable to assume that the independence assumption holds and that
the sample is representative of the population.

so02s  Hypothesis testing

po055  Hypothesis testing sits at the core of the traditional frequentist approach to inference.
It is based on comparisons of properties that characterize data samples and assesses
the observed variation by casting it as a decision problem between incompatible
hypotheses, the null hypothesis (HO) and the alternative hypothesis (HA). The former
often represents “the hypothesis of no difference,” while the latter supports the exis-
tence of a difference (Curran, 2013). Thus, to explore in the example whether there
are metric differences in the tibiae with respect to sex, HO can be phrased as “There
are no differences in the means of tibial measurements between males and females.”
HA assumes that differences exist. Analogously, when exploring the differences in
ancestry of the individuals, the HO would be “There are no differences in the means
of measurements between individuals of South European and Turkish ancestry.”

p0060 Having formulated the two hypotheses, the next step is to decide on a statistic,
which characterizes a property to be tested. For our example dataset, this could
be the difference of the mean value of the maximum length (ML) of the tibia for
males and females. HO is evaluated by calculating the significance of the statistic
and by interpreting the result. Significance is often expressed as a p-value reflecting
“the incompatibility of the data with the null hypothesis.” The smaller the p-value,
the greater the statistical incompatibility of the data with the null hypothesis, assum-
ing that the assumptions used to calculate the null hypothesis hold (Wasserstein and
Lazar, 2016).

p0065 The choice of what constitutes a large or a small p-value is arbitrary and depends
on the acceptable risk of rejecting HO when it is in fact true. This is called a type 1
error, and its probability is called significance level of the test, denoted by the Greek
letter a. In contrast, accepting HO when it is in fact false or rejecting HA when it is in
fact true comprises a type II error, denoted be the Greek letter . Setting the value of
the significance level is an important decision that examiners make, one that should
be made before the actual analysis. In practice, researchers often reject the HO if the
p-value is smaller than 0.05 or 0.01, although the results of recently published
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108 CHAPTER 3.1 Frequentist approach to data analysis

metaanalysis studies (Ioannidis, 2019) indicate that thresholds between 0.01 and
0.005 may be more appropriate. Decreasing the significance level reduces type I
errors, but it increases the rate of type II errors, since it becomes more difficult to
reject HO even when it is false. This effect is particularly pronounced when working
with small- to medium-sized samples. Another related concept is the power of the
test, the probability that HO is rejected when it is indeed false. The power of the test
equals 1-P. Decreasing the significance level increases type II errors and reduces the
power of the test.

soo30  Gomparing two independent samples and the #test

p0070  The most common question arising in forensic anthropology is inferring whether two
samples come from the same population and, if so, to quantify the degree of certainty
of this statement. This can often be reduced to evaluating whether the distributions of
the sample means of the given samples are statistically distinguishable. According to
the central limit theorem, for large number of points within each of the groups, the
sampling distribution is well approximated by the normal distribution. A #-test is then
capable of evaluating the distribution of the sample means for the two groups by
examining if the difference of their means rests within a predefined confidence inter-
val of the normal curve. The #-test statistic, denoted ¢, is the ratio of the difference of
the group means to the normal variability across the groups, the standard error (SE).

p0075 For our dataset, let Y,, = y,1,Yp2,- - -»Ypns Xp = Xp1.Xp2- - . X, bE the measurements
of a quantity p in {UB, LB, ML} for female (¥) and male (X) individuals. Let
Opx = 0y, = 0, be their common standard deviation and f,,,, p,,, the sample means
of the measurement for p. The hypotheses of each test can be mathematically formu-
lated as follows:

Ho:ply —py =0

Ha:ply— 8, 0
poo8o  The model assumptions can also be expressed in the following equations:
2 ik X7 N (i, o), V7 ~N (i of). o = oy =

poos5s  To calculate the SE, since the variance of the general population (62) is unknown,
one can use a pooled estimate of the variances of the samples:

1 1
oo\ =+ —
pool\ "’

SE=5"
where

& (n—])51;(+(m—1)51;

pool — m+n—2
S/} :Z:’:O (xf_’ul;()z P :Z:”:() (yﬂ _”1;)2
¥ (n=1) 7 (m—1)
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Introduction 109

poo9o  The r-test statistic that follows a r-distribution with (df)=n + m —2, degrees of
freedom is then calculated as follows:
_Hy—Hy
4 SE
p0095  The resulting p-value is determined by comparing the calculated value of the test
statistic to the distribution of the values that would occur, and HO should be true:

p="Pr(t>1t,;vVHO=True)

po100  If the calculated p-value is smaller than the required significance level, ag, HO is
rejected. This test is two sided, since it considers the absolute difference of the means
and not whether the difference is positive or negative. When the sign of the differ-
ence of means is part of the hypothesis being tested, a one-sided test needs to be used.

p0105 Having calculated the standard error and the degrees of freedom, one can use
tabulated values of the cutoff of the #-distribution to obtain ta04 and construct a
(1 — ap)% confidence interval (CI) for the difference of means. The corresponding
formula is

(1= a0)%CI = (uy — py) £4SE

p0110 A confidence interval provides the range of plausible values for point estimates of the
data. A 95% confidence interval for the differences of the mean of two groups indi-
cates that, if we took many samples and formed the 95% CI for the mean of
each sample, 95% of those intervals would contain the true difference of the means.
Confidence intervals are very useful for quickly assessing compatibility of new
samples with a wider population or agreements with the requirements of regulations.
It is recommended for CIs to be calculated as part of any statistical analysis since
they allow assessing the degree of compatibility of a measurement or sample with
a source population as opposed to a simple yes/no answer obtained by setting an
arbitrary p-value threshold.

p0115 For our example dataset, it is necessary to conduct three tests for each HO, one for
each tibial measurement (ML, UB, and LB). Tables 3 and 4 summarize the results of
the r-tests. All tests were two sided, since it makes no difference for our purpose if
any potential difference in the means is positive or negative.

t0020 Table 3 Overview of the t-test results for ML, UB, and LB
measurements with respect to sex.

t-Test

Difference of means t-Metric p-Value df

ML 25.79 8.37 te—14 196.50
LB 7.82 8.23 2e—15 191.62
uB 5.09 12.71 2e—16 196.60

ML, maximum length; UB, upper breadth; LB, lower breadth.
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110 CHAPTER 3.1 Frequentist approach to data analysis

to025 Table 4 Overview of the t-test results for ML, UB, and LB
measurements with respect to ancestry of the individuals.

t-Test

Difference of means t-Metric p-Value df

ML 1.57 —-0.44 0.66 196.76
LB 5.36 —8.87 4e—16 196.47
uB 1.61 —1.83 0.07 197.02

ML, maximum length; UB, upper breadth; LB, lower breadth.

p0120 In Table 3 the calculated p-values in all cases are much smaller than the requested
significance level of 0.01. At the 95% CI the difference of the means is positive for all
cases. More specifically the minimum and maximum difference is 19.7 and 31.9,
6.62 and 9.05, and 3.87 and 6.30 for ML, LB, and UB, respectively (also all positive).
The aforementioned numbers can be acquired directly from the output of the t.test()
function. It is thus unlikely that the observed differences in the means of the mea-
surements between males and females can be attributed to chance.

p0125 The results of the #-tests regarding the ancestry of the individuals indicate that the
p-value for LB is much smaller than the requested significance level of 0.01, while the
p-values for ML and UB are not (Table 4). At the 95% CI the minimum and maximum
differences of the means are —8.63 and 5.49, 3.12 and 0.12, and —6.56 and —4.18 for
ML, UB, and LB, respectively. The difference of means from Table 4 can also be
expressed as a ratio to the standard deviation of the data; this yields 0.062, 0.259,
and 1.250 for ML, UB, and LB, respectively. These values are very small for ML
and UB, and thus only for the case of LB, it is likely that the observed differences
in the means of the measurements about ancestry cannot be attributed to chance.

so035s  Deviation from normality

p0130  When the size of the sample population is larger than 30 observations, the t-test is
relatively robust to small deviations from normality. For larger sample sizes (100 or
more observations), the ¢-test is relatively robust to moderate deviation from normal-
ity. When large deviations from normality are suspected, especially when working
with small sample sizes, it is recommended to use nonparametric tests. These tests do
not require any assumption on the distribution of the data and rely on different tech-
niques to assess the p-value from the value of the test outcome, such as ranking. Non-
parametric tests are often more robust to outliers. One of the most well-known
nonparametric tests is the Mann—Whitney test (Rice, 2008).

soo40  Estimating unknown parameters

po135  Estimating the value of an unknown quantity, a dependent variable, based on other
known quantities, and independent variables or predictors, for the same specimen
requires the introduction of a mathematical model. Although there are various
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classes of models that can be used for this task (Bishop, 2006), regression models are
by far the most widely used and will thus be the focus of this section. Regression
models can be divided into two broad categories: those involving continuous depen-
dent variables and those with categorical dependent variables.

sooss  Estimating continuous variables: Linear regression

po140  The simplest model that estimates a continuous unknown parameter based on the
values of other quantities that are suspected to be relevant is a linear model with zero
mean and an uncorrelated error term with constant variance:

yi=Po+Pixin + Popxin+ -+ Py + €

po145  In the equation, y; is the variable we wish to predict for specimen i, x;; is the kth
variable for specimen i, f3; is the intercept (also the mean value of y in the popula-
tion), f1.. « is the regression coefficients for variables 1...k, and ¢; is an uncorrelated,
normally distributed, random variable with zero mean and constant variance.
The regression coefficients quantify how much an increase in variable x;; will influ-
ence the unknown variable y; if all the other variables are kept constant. Calculating
the parameters of the model is usually carried out using the least squares method
(Rice, 2008), which minimizes the sum of the squared residuals (RSS), the differ-
ences between the predictions of the model, and the true values of the dependent
variable:

RSS = E:;l (y,' —bo+bix; +. ..bkx,'k)2

po150  If the sample meets the conditions of independence, normality, and homogeneity of
variance of the residuals and there is a linear relation between the independent vari-
ables and the predictor, we can use the fit statistics to infer the regression coeffi-
cients. P-values may be used to assess the significance of individual regression
coefficients and to evaluate the stability of the estimates in terms of standard errors,
and F-test can be used to check if a subgroup of or all coefficients are zero. To further
evaluate the quality of the model fit, one has to inspect the size and distribution of the
residuals (they should be randomly distributed around the zero line, and they should
have constant variance). We also need to assess the value of the coefficient of deter-
mination, R?, which measures the percentage of variance in the data explained by
the model. If some of the assumptions for fitting the model are not satisfied, the
fit statistics cannot be relied upon, and therefore additional validation is necessary.
It should be emphasized that the use of model validation for evaluating the quality of
the fit and the performance of the model is always recommended.

p0155 For problems with more complex functional relations among the variables, direct
extensions of linear regression involving polynomial and interaction terms, regres-
sion splines, or kernel regression can be used (Hastie et al., 2008; Marra and Radice,
2010). If deviation from normality poses an issue, especially in small sample sizes
and/or presence of sizeable outliers in the data, one should use more robust regres-
sion methods such as median least square regression (MLS) or the MM estimator
(Maronna et al., 2006).
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112 CHAPTER 3.1 Frequentist approach to data analysis

sooso  Estimating categorical variables: Logistic regression

po160  When working with binary dependent variables, the most widely used model is the
logistic regression model. Logistic regression estimates the ratio of the probability
that an event will occur to the probability that it will not occur. This ratio defines
the odds of an event in statistics. The estimation is achieved by fitting a linear model
to the logarithm of the odds of the two scenarios. In our example dataset a logistic
regression model could be used, for example, to calculate the ratio of the probability
that a certain specimen belonged to a female over the probability that it belonged to a
male. The logistic regression model equation is

T
log(l ! ):ﬂ0+ﬂ1x,-1+ﬂ2x,-2+---+ﬁkxik

1

where 7; is the probability of the specimen i belonging to the first class and (1 — x;) is
the probability of the specimen i belonging to the second class. The rest of the equa-
tion is identical to the one for linear regression. Rearranging the earlier equation, one
obtains the equation for predicting the probability of a class:

e/’u + P X1+ PoXip + e+ PrXix

T = o+ Prvn +Poxa + B

po165  The class prediction is obtained by setting a threshold, 7, and assigning all speci-
mens with z; > 7y, to the first class and all remaining to the second. The most
commonly used threshold value is 7y, =0.5. However, particularly when there is
asymmetry between the different types of errors, a higher or lower threshold may
yield more appropriate results. In that case the appropriate value of the threshold
is determined empirically, by evaluating model performance on a range of thresholds
using k-fold cross validation (see next section).

p0170 In the case of multilevel dependent variables, for example, when classifying a
specimen to one of j possible groups, one can fit j-1 different one-versus-all binary
models and select the class with the largest pairwise probability. Alternatively, one
can use multinomial regression, often called softmax regression, to calculate the
probability of each class under the model (Hastie et al., 2008).

p0175 Logistic regression belongs to a class of models known as generalized linear
models (GLMs) (Dunteman and Ho, 2006). There is no analytic solution for the esti-
mation of the parameters of GLMs; thus calculations are carried out with the aid of
software, using methods such as the iterative reweighted least squares. Logistic
regression assumes that the observations are independent, that the sample is repre-
sentative of the wider populations and free of numerous outliers, and that the log odds
are linearly related to the predictors (Hastie et al., 2008). When these conditions are
satisfied, inference on individual regression coefficients is possible using the calcu-
lated p-values. Hypothesis testing, for the model as a whole, can be carried out using
the Hosmer-Lemeshow test. The quality of the fit is assessed using the deviance D of
the model, which is equivalent to the sum of squared errors. Smaller values of the
deviance correspond to a better fit. Although deviance can be used to compare
models, there is no straightforward interpretation of deviance values in isolation
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(contrary to R?). Compared with linear regression, residual plots are less informative
in logistic regression. However, the plots of the deviance residuals and the Cook’s
distances (Seber and Lee, 2003) should be inspected to identify influential observa-
tions and/or potential outliers. A large value of Cook’s distance indicates an influ-
ential observation, so observations with a large Cook’s distance should be inspected
to determine if they correspond to outliers (in which case they should be removed
from further analysis) or if they simply represent the extremes of the data
distribution.

so0s5  Model selection

p0180  Although in principle one could fit a model using all available independent variables,
in practice, it is desirable to build a model that contains only the informative vari-
ables, those crucial to the estimation of the dependent variable. Exploring such
models and selecting the most appropriate per case is a valuable tool for forensic
anthropologists and forensic scientists to gain insight into the possible data generat-
ing processes and to provide generalization for unknown cases.

p0185 For the tibia dataset, since both dependent variables are binary, binary logistic
regression is a natural model selection. Selecting the variables that will be included
in the model is in this case straightforward, but in more complex situations where
the number of variables can be large and their importance not evident, the model
selection procedure can be complex or may require expertise and experience that
is not readily available. In such cases, automatic model selection methods, such
as the stepwise selection methods and regularized regression (LASSO, Ridge regres-
sion (see Hastie et al., 2008)), can be applied.

p0190 The stepwise selection method, which will be presented as an example here,
works by iteratively adding and removing predictors, each time refitting the
model and evaluating its performance on the dataset until the optimal combination
of variables is established. The evaluation of the model’s performance may rely
on metrics such as the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) (Hastie et al., 2008). Both of these metrics balance
the incremental performance gain of adding one more variable to the model with
a complexity penalty. The smallest values of the two metrics correspond to the pre-
ferred models.

p0195 The output of a logistic regression fitted on the tibia dataset produces two out-
comes: the class predictions, that is, male/female or SE/Turkish, and the probability
of the specimen belonging to each of the two classes. The actual model equations are
the following:

log (1”‘:&) =36.1274 — 0.0216*ML — 0.3948*UB

— TlFemale

log (1 fsE ) = —5—0.024*ML +0.559*LB — 0.184*UB
— ISE
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too30 Table 5 Logistic regression results of best fit for the sex estimation model,
AlIC=156.6.

Coefficients

Estimate Std. Error z Value Pr(>|z|)
(Intercept) 36.127 4.989 7.241 4e-13
uB —0.394 0.064 —6.132 9e—10
ML —0.021 0.010 —2.100 0.035

t0035 Table 6 Logistic regression results of best fit for the ancestry estimation model,

AIC=184.41.
Coefficients

Estimate std. Error z Value Pr(>|z|)
(Intercept) 4,997 2.752 —1.816 0.069
uB —-0.184 0.0564 —3.259 0.001
ML 0.024 0.009 —2.534 0.011
LB 0.559 0.080 6.959 3e—12

p0200  The results of the best fits for sex and ancestry estimation models, respectively, are
shown in Tables 5 and 6. The tables summarize the output of the GLM function for R.
The actual code is available in http://dev.med.uoc.gr/forensic/tbcl/chapter.jsp,
examples 3 and 4.

p0205 The results of the model selection exercise may seem counterintuitive at first. In
the sex estimation example, where HO was rejected for all independent variables, the
best identified model does not include all variables since LB was excluded. On the
contrary, in the ancestry estimation model, where HO was rejected for LB, the best
model identified includes all three independent variables. The key to understanding
how this can be possible lies in the observation that the model assumption of uncor-
related independent variables is violated. The individual t-tests evaluated HO for each
variable in isolation. However, the existence of collinearity between independent
variables may imply “information sharing” and possibly redundancy. By evaluating
all possible combinations of variables during the model selection, we established that
there is redundancy between the variables, and hence, LB was excluded from the
model. The inclusion of all variables in the ancestry estimation model is an artifact
of ignoring the correlations between the independent variables. Variables that have
little significance when evaluated in isolation can contribute to discriminating infor-
mation in the context of other variables, which is an effect called confounding.
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0015 Cook’s distance plots for (A) sex estimation model and (B) ancestry estimation model.

p0210 As mentioned earlier, evaluating the quality of fit for GLMs is not trivial. Cook’s
distance plot for the sex estimation model (Fig. 2A) shows two observations (88 and
239), which could be potential outliers. The equivalent plot for the ancestry estima-
tion model (Fig. 2B) shows three such observations (188, 620, and 631).

sooe0  Assessing performance: Model validation

p0215  The regression parameters provide no direct information regarding the performance
of the model on the actual predictive task. Assessing the model’s predictive perfor-
mance and generalization capacity involves selecting an appropriate performance
metric and evaluating this metric on a large, independent sample from the wider
population. In practice, however, the requirement for a second independent dataset
is often unrealistic. In such cases the sample population could be divided into two,
a reference population to be used in the development of the model and a validation
population, often called the holdout set. Although this approach provides an indepen-
dent verification of the model’s performance, it does not provide any information
about its reliability or about its performance on a different input. A better, although
computationally more demanding, approach is to evaluate the model using an iter-
ative resampling method such as k-fold cross validation (James et al., 2015). First
the sample dataset is randomly shuffled and split into k£ parts. One set is set aside
to be used for validation, and the model is fit on the other k-1 parts. Once fitted
the model is evaluated on the dataset that was not used for the fit. This process is
repeated k times, each time using a different subsample as the validation set and
the remaining data for model fit, until all combinations are exhausted. This procedure
yields k different estimates of the generalization ability of the model that can be used
to calculate the mean and standard deviation of the estimates. For k =2, it yields
the basic train-validation split described earlier, while for kX = n, where 7 is the size
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of the dataset, one obtains the leave-one-out cross-validation (LOOCV) method
(James et al., 2015). The selection of the performance metric depends on the type
of problem, the relevant significance and cost of type I and type II errors, and
on the nature of the dataset. Some of the most commonly used metrics include
the classification accuracy, the F1 score, or the area under the curve (AUC)
(James et al., 2015). It is also important for any model evaluation to compare the
model’s performance with a realistic baseline.

p0220 Before assessing the performance of the models for our example dataset, we
investigated whether removing the three observations (188, 620, and 631) with large
values of Cook’s distance from the training set would have a positive effect in
the ancestry estimation model. There was no notable difference in performance;
thus the results presented here include all observations.

p0225 The predictive performance of both models was estimated using 10-fold cross
validation. The class selection threshold was set to 7y, =0.5. The accuracy of the
sex estimation model is 82.5%, with a standard deviation of 8.6%. The accuracy
of the ancestry estimation model is 78%, with a standard deviation of 8.9%.

soo65  Discussion

p0230  Frequentist statistics have been applied on several occasions in forensic anthropol-
ogy. Prediction models regarding sex, ancestry, age, and stature estimation have been
developed based on hypothesis testing (e.g., Buckberry and Chamberlain, 2002;
Krishan and Sharma, 2007; Walker, 2008; Kranioti et al., 2018). Yet, it is not always
clear whether the results are well understood or well interpreted. Let’s consider as an
example the two questions explored in this chapter. We used metric variables to pre-
dict sex and ancestry, both binary variables. The HO for both outcomes was rejected
because variables were found to be statistically significantly different between the
groups, and the models developed achieved a cross-validation accuracy of 82.5%
for sex and 78% for ancestry. In the first case the tibial measurements were used
to infer sex. The specimen can be either male or female. Thus the decision is purely
binary; the probability of an unknown tibia that belongs to one of the two groups
sums up to 100%. So in that case the result would indicate that the probability that
the bone belongs to a female is 95% (vs 5% to a male), that is, it is 19 times more
likely that the bone belongs to a female compared with a male. In the case of ancestry
though, even if the model was created to provide a binary response (South European
or Turkish), there is always the possibility of the person belonging to a group not
represented in the dataset (e.g., African). Thus the interpretation and reporting are
not as straightforward as for sex estimation. For an answer that is similar as in the
sex estimation example, that is, if the result indicates that the probability of the
unknown tibia belonging to a Turkish individual is 95% versus 5% to a South Euro-
pean individual, the individual is 19 times more likely to be Turkish than Southern
European. However, given the current dataset, no information can be provided
regarding other population groups, if the question would be what the chances are
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of that specific individual descending from African or Asian populations. Thus the
rejection of HO does not guarantee a solid answer to the ancestry problem. This
example demonstrates that even a well-executed statistical analysis does not always
lead to efficient problem solving.

Another important point to note is that frequentist hypothesis testing introduces
an asymmetry between the two hypotheses. All calculations and statements are made
with respect to the validity of HO. No calculations or statements are made regarding
the alternative hypothesis. This is a major difference in comparison with Bayesian
statistics where both HO and HA are tested individually to express the odds. Further-
more, one should understand that in the frequentist approach, failing to reject the HO
does not mean that the expert believes that it is true; it just indicates that the evidence
collected may have not been sufficient to establish beyond every reasonable doubt
that it is not false. To convey that fact, it is common practice to use double negatives
(e.g., “failed to reject the HO””) when communicating the results of the frequentist
hypothesis testing.

Due to the aforementioned limitations of hypothesis testing and a growing aware-
ness of its widespread abuse, a transition toward a post-p-value statistical approach to
frequentist inference is currently underway. Advocates of this approach propose
using confidence intervals, effect sizes, and the notion of degree of compatibility
rather than the binary acceptance/rejection of hypothesis based on comparison with
arbitrary set significance values (Amrhein et al. 2019; Wasserstein et al. 2019).

In conclusion, taking into account the critical comments, statistical approaches in
forensic anthropology and forensic sciences in general should follow a simple rule
the expert should choose the appropriate method according to the available data and
questions asked in the given case and ensure to understand and interpret the results
supporting their assessment with statistical evidence.

Probability is common sense reduced to calculation.
Laplace
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Abstract

Forensic anthropologists are requested to give authorities estimates on the biological characteristics of
unidentified decomposed remains in an effort to create a physical description that can be compared with
a missing person’s profile, eventually leading to positive identification. To answer these questions, scien-
tists traditionally follow a variety of statistical approaches such as frequentist and Bayesian statistics in
both analysis and interpretation. The main subject of this chapter is to summarize the frequentist statistical
approach and to illustrate with examples the rationale in the method selection and interpretation.

Keywords: Forensic anthropology, Forensic medicine, Frequentist statistics, Frequentist inference, Sci-
entific computing
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